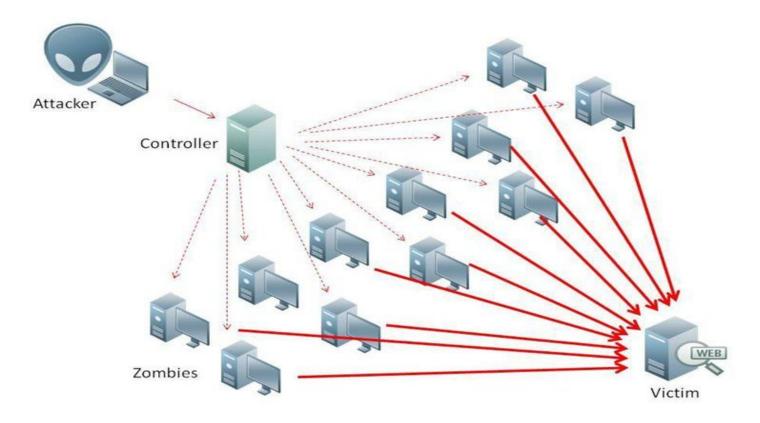


A Machine Learning Approach for Detecting Distributed Denial of Service Attacks

Tanaphon Roempluk
Master's degree studying
Majoring in Information technology
Faculty of informatics, Mahasarakham University

Presentation is Divided Into Five Parts:

First part: Introduction.


Second part: Method for classifying.

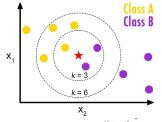
Third part: Describe.

Fourth part: Experience and Results.

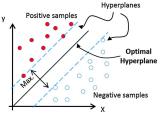
Final part: Summarize.

Introduction

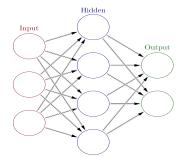
Method for Classifying

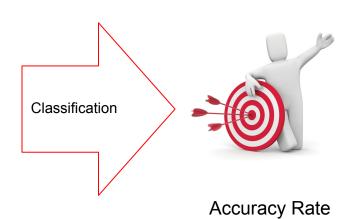


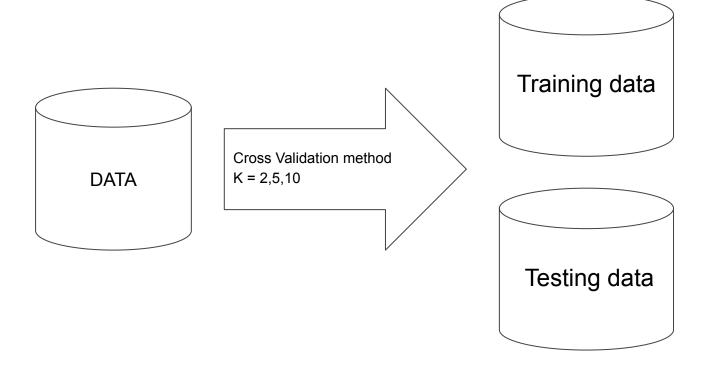
Network Security Information

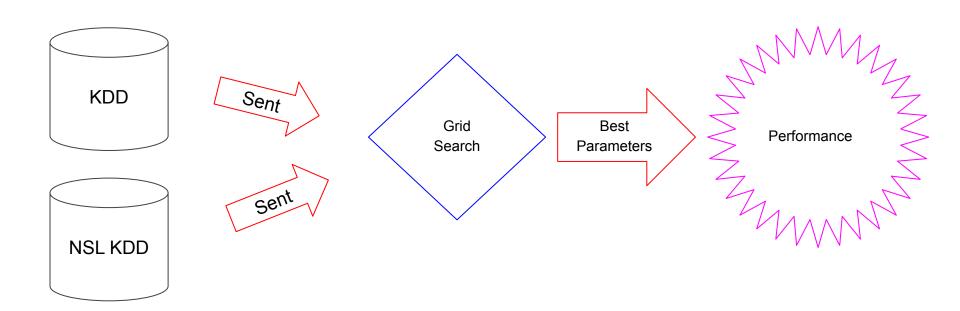

Machine Learning

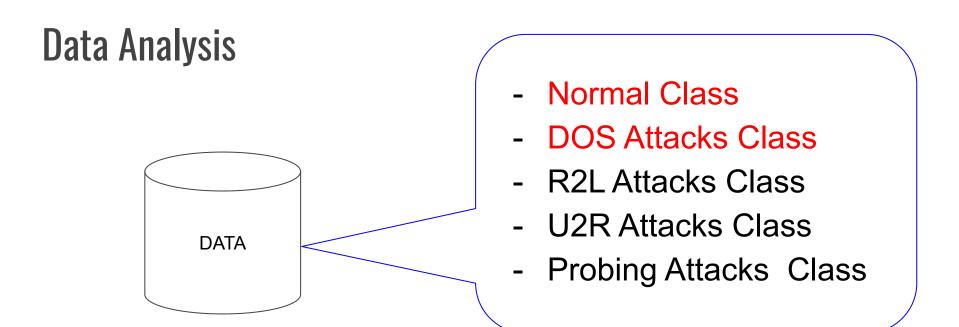
Classifying DDoS Attack


Technique for Classification


The K-Nearest-Neighbor (KNN)


Support Vector Machine (SVM)


Multi-Layer Perceptron (MLP)



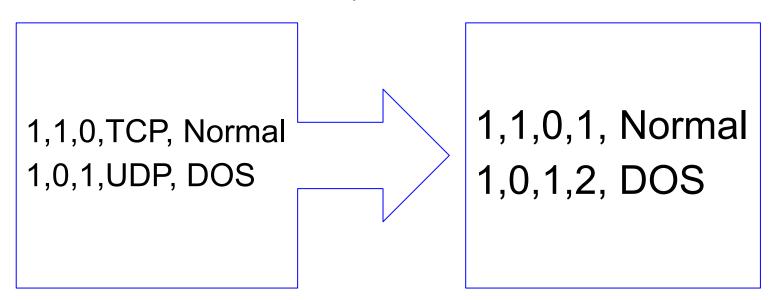
Cross Validation Method

Grid Search Method

The datasets were divided into Normal Class and 4 features of attack class.

In the dataset of this research, there are 41 features which are selected only normal and DDoS attacks

Data Pre-Processing


1,1,0,TCP, Normal 1,1,0,TCP, Normal 0,1,0,TCP, Normal 1,1,1,TCP, Normal 1,0,1,UDP,DOS

DATA

Removed Duplicate Data.

Data Pre-Processing

Convert Alphabet to Numeric

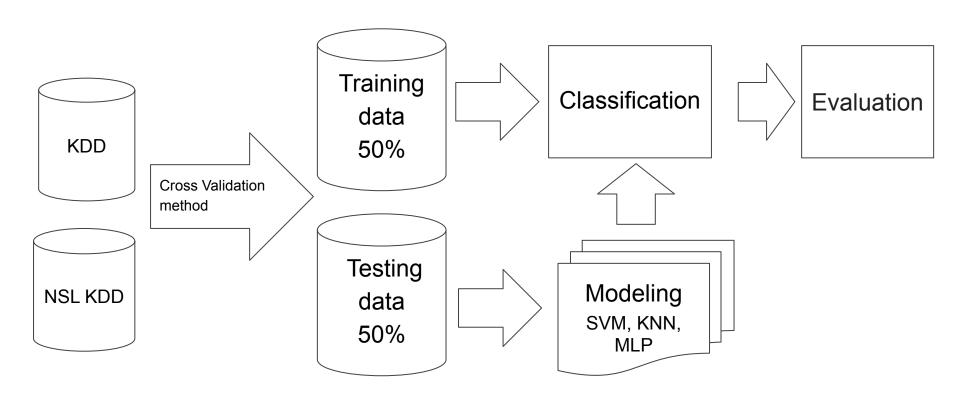
Data Series

DATASET KDD, NSL KDD

The dataset was divided into 3 series

Series 1 has 2 classes

Normal and Attack


Series 2 has 6 classes

DDoS attacks. There are Neptune, Pod, Smurf, Teardrop, Land and Back

Series 3 has 7 classes

Neptune, Pod, Smurf, Teardrop, Land, Back and Normal

Modeling of Data for DDoS Attacks Classification

TABLE I: Accuracy Results of the KDD Dataset

Methods	Parameters Setting	Accuracy (%)
KDD 2-Class+SVM	rbf kernel, $C = 8, \gamma = 16$	98.946 ± 0.022
KDD 2-Class+KNN	K=3	99.983 ± 0.003
KDD 2-Class+MLP	Hidden layer = 150	98.833 ± 0.131
KDD 6-Class+SVM	rbf kernel, $C = 8, \gamma = 32$	98.781 ± 0.020
KDD 6-Class+KNN	K=3	99.998 ± 0.002
KDD 6-Class+MLP	Hidden layer = 20	99.981 ± 0.131
KDD 7-Class+SVM	rbf kernel, $C = 4, \gamma = 32$	99.096 ± 0.027
KDD 7-Class+KNN	K=3	99.984 ± 0.002
KDD 7-Class+MLP	Hidden layer = 500	99.944 ± 0.019

TABLE II: Accuracy Results of the NSL-KDD Dataset

Methods	Parameters Setting	Accuracy (%)
NSL-KDD 2-Class+SVM	rbf kernel, $C=1, \gamma=32$	91.171 ± 0.194
NSL-KDD 2-Class+KNN	K = 3	99.191 ± 0.044
NSL-KDD 2-Class+MLP	Hidden layer = 200	98.091 ± 0.265
NSL-KDD 6-Class+SVM	rbf kernel, $C = 4, \gamma = 16$	95.364 ± 0.603
NSL-KDD 6-Class+KNN	K=3	99.951 ± 0.026
NSL-KDD 6-Class+MLP	Hidden layer = 150	98.730 ± 1.200
NSL-KDD 7-Class+SVM	rbf kernel, $C = 1, \gamma = 16$	91.182 ± 0.183
NSL-KDD 7-Class+KNN	K = 3	99.087 ± 0.076
NSL-KDD 7-Class+MLP	Hidden layer = 100	98.066 ± 0.137

CONCLUSION

- Find a special feature

Reduce the number of features

Not reduce the accuracy rate

THANK

