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Handwritten Character Recognition 

 Automatic Reading System, 

how can machines understand the 

context in document.

 Various Applications:

 Historical Document Analysis

 Text Image Retrieval 

 Traffic-sign Recognition

 Signature Verification  



Previous Works

English        Chinese          Bangla                 Hangul                      Thai

Different Language Characters

Difficulties :
 Different head and line-trail. 
 Stroke and curve. 
 Personal writing style.
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Machine Learning 
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Research Contributions:

Images Recognition (Machine Learning)

Contributions:

 Improve the efficiency recognition of thai handwritten 

recognition by CNN

 Comparison of the CNN Architectures

 VGGNet and Inception-ResNetV2 with feature-based SVM

 Learning style, Scratch and Transfer Learing



CNN Background 

AlexNet
https://figshare.com/articles/CNN_architecture_used_to_perform_image_classification_/5843691

Layers :
 Convolution Layers 
 Pooling Layers
 Fully Connected Layers

https://figshare.com/articles/CNN_architecture_used_to_perform_image_classification_/5843691


CNN Background 

AlexNet
Convolution Layer Activation Function 

Rectified Linear Unit  (ReLU)



CNN Background 

AlexNet
Fully Connected Layer 

Softmax Function
Pooling Layer



VGGNet

 Very Deep Convolutional 

Networks for Large-Scale 

Image Recognition[2013], 

VGGNet is the use of a convolution 

filter that is very small, only 3x3 

filter when using convolution 

processing

 64, 128, 256, 512 channels 



Inception-ResnetV2
 Inception model series

 Inception-v1 , GoogLeNet (2013)

 Inception-v2, Batch normalization (BN) 

 Inception-v3 Factorization  convolutions, such 

7x1,7x1 etc

 Inception-v4, ResNet

Inception-v4, Inception-ResNetv2 and the 

Impact of Residual Connections on 

Learning

 InceptionResNetV2

 Stem block

 Inception-ResNet A B and C blocks

 Reduction A and B Blocks



Stem block

35x 35 x 256 

229 x 229 x 3 



Inception-Resnet Block

Residual Connection + 

Inception Block



Reduction Block

35 x 35 x 256

17 x 17 x 896

17 x 17 x 896

8 x 8 x 1792



Scratch and Transfer Learning

 Scratch Learning is a complex process and takes a long time to learn 

due to the learning beginning with creation of a random weight, 

 Transfer learning is applying knowledge from previous domains that 

have been learned. It is called the Pre-trained model which directly 

results in faster training and higher effectiveness. 



Thai Handwritten Characters Dataset

 ALICE-THI dataset , 78 

Thai characters; from150 

undergraduate students, 

aged 20-23,

 THI-C68 14,490 characters, 

68 classes including:

 44 consonants, 

 17 vowels, 

 4 tones

 3 symbols



Experimental Setup
 CPU 3.0 GHz, Quad-Core, GPU GeForce GTX 1080Ti, Memory 16GB

 The 5-fold and 10-fold following ratios;  Train:Valid:Test , 

7:1:2 and 8:1:1, respectively.

 Stochastic Gradient Decent (SGD) with momentum , learning rate 0.001, 

momentum 0.9 , decay learning rate 0.0001 

 100 epoch , and 32 batch size

 Pre-trained CNN Model  ImageNet Dataset

Properties

CNN Models

VGGNet Inception-

ResNet-v2

Input Image Size (Pixel) 128x128 128x128

Memory (MB) 160.6 437.5

Parameters (M) 20 54.44

Train Times (sec/epoch) 41.00 74.18

Test Times (sec/image) 0.0014 0.0043



Experimental Result
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Conclusions

 Effective  in recognizing Thai handwritten characters (THI-C68) with a 

high rate of recognition. 

 Experimental  2 CNN models are VGGNet-19 and Inception-ResNet-v2

architectures. 

 CNNs is higher than previous works, which are feature-based SVM

 Transfer learning is a way to reduce learning time and increasing the 

efficiency of recognition. 

 VGGNet-19 architecture with transfer learning has an accuracy rate at 

99.20% of Thai handwritten characters

 VGGNet-19 is an appropriate model to solve the problems of  “Thai 

Handwritten Character Recognition”
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