

IMPROVING RECOGNITION OF THAI HANDWRITTEN CHARACTER WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Sarayut Gonwirat and Olarik Surinta

Multi-agent Intelligence Simulation Laboratory Department of Information Technology Faculty of Informatics Mahasarakham University, Thailand

Handwritten Character Recognition

- Automatic Reading System, how can machines understand the context in document.
- Various Applications:
 - Historical Document Analysis
 - Text Image Retrieval
 - Traffic-sign Recognition
 - Signature Verification

<u>อ.ค.โก</u> ตุภมหางกยกระมีรักธาวะปู่ สีมเรามากาสิงกรัก
การเริ่มชาน เล็กๆ (ทำเล็กๆ)
Maszleontroversions Remove file
วิเคราะห์

- ว ก ตตลหนายกร์ธิวิเล ศีญากสิงทีรัก — | กรเอิมต้นเล็กๆ (ทดึกๆ) | (กิจรป่ลดฟคื่อย ติ้ว 10ง 🛛

Previous Works

Different Language Characters

ก

ภ

31

ฦ

ซ

ช

M

ъ

M

er

- Stroke and curve. •
- Personal writing style. •

Feature Extraction

Handwritten Recognition Process

Machine Learning

Handwritten Recognition Process

Research Contributions:

Contributions:

- Improve the efficiency recognition of thai handwritten recognition by CNN
- Comparison of the CNN Architectures
 - VGGNet and Inception-ResNetV2 with feature-based SVM
 - Learning style, Scratch and Transfer Learing

CNN Background

https://figshare.com/articles/CNN_architecture_used_to_perform_image_classification_/5843691

Layers :

- Convolution Layers
- Pooling Layers
- Fully Connected Layers

CNN Background

Convolution Layer

22	15	1	3	60		0	0	0	0	0			
42	5	38	39	7		0	0	0	1	0	1	3	60
28	9	4	66	79	\times	0	0	0	0	0 =	38	39	7
0	82	45	12	17		0	0	0	0	0	4	66	79
99	14	72	51	3		0	0	0	0	0			

 $X_{k,l,n}^{p+1} = \sum_{i,j,m} K_{i,j,m,n} x_{k+i-1,l+j-1,m}^{p}$

Activation Function Rectified Linear Unit (ReLU)

 $ReLU(x) = \max(0, x)$

CNN Background

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters
and stride 2

Fully Connected Layer Softmax Function

 $softmax(x) = \frac{\exp(x)}{\sum_{i}^{N} \exp(x_{i})}$

VGGNet

- Very Deep Convolutional Networks for Large-Scale Image Recognition[2013], VGGNet is the use of a convolution filter that is very small, only 3x3 filter when using convolution processing
- 64, 128, 256, 512 channels

VGG19	VGG16
Image	Image
Conv3-64	Conv3-64
Conv3-64	Conv3-64
Max Pool	Max Pool
Conv3-128	Conv3-128
Conv3-128	Conv3-128
Max Pool	Max Pool
Conv3-256	Conv3-256
Conv3-256	Conv3-256
Conv3-256	Conv3-256
Conv3-256	Max Pool
Max Pool	Conv3-512
Conv3-512	Conv3-512
Conv3-512	Conv3-512
Conv3-512	Max Pool
Conv3-512	Conv3-512
Max Pool	Conv3-512
Conv3-512	Conv3-512
Conv3-512	Max Pool
Conv3-512	FC-4096
Conv3-512	FC-4096
Max Pool	FC-1000
FC-4096	Softmax
FC-4096	
FC-1000	
Softmax	

Inception-ResnetV2

- Inception model series
 - Inception-v1, GoogLeNet (2013)
 - Inception-v2, Batch normalization (BN)
 - Inception-v3 Factorization convolutions, such 7x1,7x1 etc
 - Inception-v4, ResNet

Inception-v4, Inception-ResNetv2 and the Impact of Residual Connections on Learning

- InceptionResNetV2
 - Stem block
 - Inception-ResNet A B and C blocks
 - Reduction A and B Blocks

InceptionResNet						
Image						
Stem						
Inception-ResNet A						
x 5						
Reduction-A						
Inception-ResNet B						
x10						
Reduction-B						
Inception-ResNet C						
x5						
Average Pooling						
Softmax						

Stem block

Inception-Resnet Block

InceptionResNet

Reduction Block

Scratch and Transfer Learning

- *Scratch Learning* is a complex process and takes a long time to learn due to the learning beginning with creation of a random weight,
- *Transfer learning* is applying knowledge from previous domains that have been learned. It is called the *Pre-trained model* which directly results in faster training and higher effectiveness.

Thai Handwritten Characters Dataset

- ALICE-THI dataset, 78 Thai characters; from150 undergraduate students, aged 20-23,
- THI-C68 14,490 characters, 68 classes including:
 - 44 consonants,
 - 17 vowels,
 - 4 tones
 - 3 symbols

ብ	ଥ	U	Ø	የኒ	7)	9	9	କ୍ଷ	g
ъ	ស	ມູ	ป	2	153	'n	୧୪	5 \}	ด
61	গ	11	ជ	чь	ป	2	IJ	ન્ય	W
9	ภ	મ	ଧ	7	5	Ŕ	ฦ	3	ø
9 ¥	ส	પ્ય	%	Ð	ð	ष	2	e	J
۵	a	ත	a	٩	91	6	ĩ,	ୢ	Y
5	к	1	У	r)	+	6	0		

Experimental Setup

- CPU 3.0 GHz, Quad-Core, GPU GeForce GTX 1080Ti, Memory 16GB
- The 5-fold and 10-fold following ratios; Train:Valid:Test, 7:1:2 and 8:1:1, respectively.
- Stochastic Gradient Decent (SGD) with momentum , learning rate 0.001, momentum 0.9 , decay learning rate 0.0001
- 100 epoch , and 32 batch size
- Pre-trained CNN Model ImageNet Dataset

	CNN Models				
Properties	VGGNet	Inception- ResNet-v2			
Input Image Size (Pixel)	128x128	128x128			
Memory (MB)	160.6	437.5			
Parameters (M)	20	54.44			
TrainTimes (sec/epoch)	41.00	74.18			
Test Times (sec/image)	0.0014	0.0043			

Experimental Result

Methods	Accuracy Rate (%)				
Methous	10-cv	5-cv			
SiftD-SVM [18]	94.34	-			
HOGFoDRs-SVM [5]	-	98.76			
VGGNet-Scratch	97.93 ± 0.55	96.93 ± 0.48			
Inception-ResNet-Scratch	98.15 ± 0.24	97.79 ± 0.29			
VGGNet-Transfer	99.20 ± 0.27	98.81 ± 0.25			
Inception-ResNet-Transfer	98.88 ± 0.24	98.61 ± 0.14			

- [1] Surinta, O., Karaaba, M.F., Schomaker, L.R.B. and Wiering, M.A. 2015. Recognition of handwritten characters using local gradient feature descriptors. Engineering Applications of Artificial Intelligence. 45, (Oct. 2015), 405–414.
- [2] Inkeaw, P., Bootkrajang, J., Marukatat, S., Gonçalves, T. and Chaijaruwanich, J. 2019. Recognition of Similar Characters using Gradient Features of Discriminative Regions. Expert Systems with Applications. 134, (Nov. 2019), 120–137.

Conclusions

- Effective in recognizing Thai handwritten characters (THI-C68) with a high rate of recognition.
- Experimental 2 CNN models are VGGNet-19 and Inception-ResNet-v2 architectures.
 - CNNs is higher than previous works, which are feature-based SVM
 - Transfer learning is a way to reduce learning time and increasing the efficiency of recognition.
- VGGNet-19 architecture with transfer learning has an accuracy rate at 99.20% of Thai handwritten characters
- VGGNet-19 is an appropriate model to solve the problems of *"Thai Handwritten Character Recognition"*

Thank you 61011262002@msu.ac.th