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Handwritten Character Recognition

e Automatic Reading System, : o
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e Various Applications:

o Historical Document Analysis
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. Traffic—sign Recognition

e Signature Verification
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Previous Works

Different Language Characters
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Difficulties :
e Different head and line-trail.
e Stroke and curve.

e Personal writing style.
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Feature Extraction

Handwritten Recognition Process
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Machine Learning

Handwritten Recognition Process
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Research Contributions:

»

Recognition (Machine Learning)

Contributions:
o Improve the efficiency recognition of thai handwritten
recognition by CNN
o Comparison of the CNN Architectures
o VGGNet and Inception-ResNetV2 with feature-based SVM

o Learning style, Scratch and Transfer Learing



CNN Background
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https://figshare.com/articles/CNN_architecture used to perform image classification /5843691
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Layers :
e Convolution Layers
e Pooling Layers

e Fully Connected Layers


https://figshare.com/articles/CNN_architecture_used_to_perform_image_classification_/5843691

CNN Background
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Activation Function

Rectified Linear Unit (ReL.U)
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CNN Background

3D output after layer :
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Convolutional

Max pooling
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VGGNet

e Very Deep Convolutional
Networks for Large-Scale
Image Recognition[2013],
VGGNet is the use of a convolution
filter that is very small, only 3x3
filter when using convolution

processing

e 64,128,256, 512 channels
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Inception—ResnetVZ

o Inception model series
e Inception-vl , GoogleNet (2013)
o Inception-v2, Batch normalization (BN)
o Inception-v3 Factorization convolutions, such

7x1,7x1 etc
e Inception-v4, ResNet

Inception-v4, Inception-ResNetvZ2 and the
Impact of Residual Connections on

Learnin g

e InceptionResNetV2
e Stem block
o Inception-ResNet A B and C blocks
e Reduction A and B Blocks

InceptionResNet
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Stem block

Stem
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Inception—Resnet Block
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Reduction Block
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Scratch and Transfer Learning
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o Scratch Learning is a complex process and takes a long time to learn

due to the learning beginning with creation of a random weight,

o Transfer learning is applying knowledge from previous domains that

have been learned. It is called the Pre-trained model which directly

results in faster training and higher effectiveness.



e ALICE-THI dataset, 78

Thai characters; from150

undergraduate students,

aged 20-23,

THI-C68 14,490 characters

68 classes including:

b/

e 44 consonants,
e 17 vowels,
e 4 tones

o« 3 symbols
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Thai Handwritten Characters Dataset



Experimental Setup

« CPU 3.0 GHz, Quad-Core, GPU GeForce GTX 1080Ti, Memory 16GB
e The 5-fold and 10-fold following ratios; Train:Valid:Test ,
7:1:2 and 8:1:1, respectively.
o Stochastic Gradient Decent (SGD) with momentum , learning rate 0.001,
momentum 0.9 , decay learning rate 0.0001
o 100 epoch , and 32 batch size
e Pre-trained CNN Model ImageNet Dataset

CNN Models

Properties VGGNet Inceptlon-
ResNet-v2

Input Image Size Plxel 128x128 128x128
Memory (MB 160.6 437.5
Parameters (M 20 54.44
TrainTimes (sec/epoch 41.00 74.18
TestTimes (sec/image 0.0014 0.0043




Experimental Result

Methods Accuracy Rate (%)
10-cv S-¢cv
SiftD-SVM [18] 904.34 -
HOGFoDRs-SVM [5] - 08.76
VGGNet-Scratch 97.93 £0.55 96.93 £0.48
Inception-ResNet-Scratch 08.15+0.24 907.79 £0.29
VGGNet-Transfer 99.20 £ 0.27 98.81 £ 0.25
Inception-ResNet-Transfer | 98.88 =0.24 08.61 =0.14
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Conclusions

o Effective in recognizing Thai handwritten characters (THI-C68) with a
high rate of recognition.
o Experimental 2 CNN models are VGGNet-19 and Inception-ResNet-v?2
architectures.
e CNNis is higher than previous works, which are feature-based SVM
o Transfer learning is a way to reduce learning time and increasing the
efficiency of recognition.

e VGGNet-19 architecture with transfer learning has an accuracy rate at
99.20% of Thai handwritten characters

o VGGNet-19 is an appropriate model to solve the problems of “Thai

Handwritten Character Recognition ”
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