

FOOD IMAGE CLASSIFICATION WITH IMPROVED MOBILENET ARCHITECTURE AND DATA AUGMENTATION

Mahasarakham University, Thailand

OUTLINE

Introduction Related work Methodologies Experimental and results Conclusion

INTRODUCTION

What the problem?

People are becoming obesity and overweight.

How to classification the images?

- Hand-craft feature
- Deep learning Algorithm

How to resolve the 01 problem? The estimate calories

system from food images.

What the challenge?

- Images are different
- Images are similar
- Images are many object

RELATED WORK

Reference	Method	Accuracy (%)
Yanai and Kawano [2015]	Deep Convolution Neural Network (DCNN)	70.41
Martinel et.al. [2016]	Supervised Extreme Learning Committee	55.89
Pandey et al. [2017]	FoodNet: Ensemble Net	72.10
Lin et al. ASARA	DeepFood wy y y y y	77.00
[2018] V E R	SITY	10.

CONTRIBUTION

Improved MobileNet Architecture

Data Augmentation Technique

METODOLOGIES

METODOLOGIES

MobileNet Architecture

Proposed MobileNet Architecture

METODOLOGIES

The data augmentation techniques; rescaling, rotation, width shift, height shift, horizontal flip, shear, and zoom.

2

Random cropping, the position of points (x,y) are random, then it automatic cropping and resize to the target size.

Data Augmentation Techniques

Dataset

ETH Food-101

- The real-world food images are collected by downloading from foodspotting.com website.
- The food images are a mix of eastern and western meals.
- The dataset consists of 101,000 images from 101 food categories.

Experimental Setup

Divided the dataset

Dataset

Set I 10,100 images

Set II 20,200 images

Set III 30,300 images

Set IV 40,400 images **Training** 70%

Validation 10%

> **Testing** 30%

Experimental Setup

- The parameter setting
 - √ Stochastic gradient descent (SGD) solver
 - ✓ Batch size of 16
 - ✓ Learning rate at 0.0001
 - √ TensorFlow platform
 - ✓ Intel[®] Core[™] i7-4790 CPU
 - ✓ 8GB RAM

Experimental Results

The performance of the MobileNet and improved MobileNet architectures versus the different number of training samples (Set I - Set IV) on the ETH food-101 dataset.

MAHASARAKHAM U N I V E R S I T Y

Experimental Results

The performance results of food image classification between MobileNet and improved MobileNet architectures with Data Augmentation.

Method	The number of image per class	Accuracy (%)
Data Augmentation + MobileNet	400	57.90
Data Augmentation + improved MobileNet	400	69.86

Experimental Results

The performance results of food image classification on four subsets on ETH Food-101 dataset using the proposed MobileNet architecture.

Methods	Subsets of the EHT Food-101 dataset			
ivietilous	1	Ш	III	IV
Without data augmentation	45.84	51.29	60.26	66.78
Random cropping	45.79	55.82	59.52	67.44
With data augmentation	48.71	56.71	62.49	69.86
With data augmentation + random cropping	51.39	59.68	65.97	72.59

Experimental Results

The performance results of food image classification between the proposed MobileNet architecture and other previous methods

Method	The number of image per class	Accuracy (%)
Random Forest Discriminative Components	1,000	50.76
Supervised Extreme Learning Committee	1,000	55.89
Data Augmentation + Inception V3	1,000	70.41
FoodNet: Ensemble Net	1,000	72.10
Our proposed (Data Augmentation + MobileNet)	400	72.59

Experimental Results

The performance results of food image classification between the proposed MobileNet architecture and other previous methods

Method	The number of image per class	Accuracy (%)
DeepFood	1,000	77.00
Our proposed (Data Augmentation + MobileNet)	400	72.59

CONCLUSION

- ✓ The proposed MobileNet architecture is the best performance than the MobileNet architecture.
- √ The data augmentation are impact to food image classification.
- ✓ The best performance achieved an accuracy of 72.59% when the combination of the various data augmentation techniques and the proposed MobileNet architecture.

CONCLUSION

In future work

- We are interested in extracting the feature vector from the convolutional layers which may work better than individual deep CNN architecture.
- We plan to construct the deep ensemble convolutional neural network (CNN) architectures, which is the combination of the state-of-the-art deep CNN architectures.

