GENDER RECOGNITION FROM FACIAL IMAGES USING LOCAL GRADIENT FEATURE DESCRIPTORS

Olarik Surinta
Thananchai Khamket

Present at The 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing – iSAI-NLP2019
1 November 2019
OUTLINE

• Contributions

• Gender Recognition Methods
 • Face Detection
 • Local Gradient Feature Descriptors
 • Classifier Method

• Experimental Settings and Results

• Conclusion
Contributions

• We proposed two well-known local gradient feature descriptors
 • *Histogram of Oriented Gradients (HOG)*
 • *Scale-Invariant Feature Transform (SIFT)*

• The gradient feature descriptor combined with the *Support Vector Machine (SVM) with the Radial Basis Function (RBF)*
Gender Recognition Methods

• Face Detection: *Haar-Cascade Classifier*
• Local Gradient Feature Descriptors: *HOG and SIFT*
• Classifier Method: *SVM with RBF Kernel*

- HOG: \[0.123, 0.345, \ldots, 0.999 \]
- SIFT: \[0.224, 0.134, \ldots, 0.999 \]
Experimental Settings and Results

- We will describe;
 - The *face image dataset* used in the experiments
 - The experimental results consisting of
 - *The face detection results*
 - *Parameter settings*
 - *Grid search parameter estimation*
 - *Gender recognition results*
Face image dataset

• We used a benchmark face image dataset, called *the color face recognition technology (ColorFERET) dataset*.
 • Firstly, we used ColorFERET for *face detection* purpose.
 • Secondly, we divided the ColorFERET dataset using *2-fold (50:50) and 10-fold (90:10)*.
Face image dataset

• The ColorFERET dataset consists of 14,126 face images from 1,199 subjects.
• The resolution of images in the dataset is 384×256 pixels.
Face image dataset

• In the ColorFERET dataset, there are **13 different poses** of each person, such as regular frontal image, profile left, half left, quarter left and also head turned
Experimental results

• Face Detection Result:

\[Acc_{fd} = Ac_{fd} - Er_{fd} \]

when

\[Ac_{fd} = \frac{c \times 100}{N} \]

where

- \(c \): The number of face images, after using a face detection technique
- \(e \): The number of the error face images
- \(N \): The total number of the face images in the dataset
Experimental results

- **Face Detection Result:** The Haar-Cascade classifier obtained an accuracy of **39.25%**.
- The accuracy of the male and female faces was 36.87% and 41.63%, respectively.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Number of male images</th>
<th>Number of face detected</th>
<th>Number of error detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>7,139</td>
<td>2,854</td>
<td>222</td>
</tr>
<tr>
<td>Female</td>
<td>3,980</td>
<td>1,770</td>
<td>113</td>
</tr>
</tbody>
</table>
Experimental results

• Face Detection Result:
Parameter settings

- The best parameters of *HOG descriptor* used 9 orientations, 8 pixels per cell, and 3 cells per block.
Parameter settings

- The best parameters of SIFT descriptor used:
 - Patch size = 25 pixels

TABLE III. THE PERFORMANCE OF THE SIFT DESCRIPTOR USING DIFFERENCE PATCH SIZES

<table>
<thead>
<tr>
<th>SIFT Descriptor Parameters</th>
<th>Patch sizes</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>98.2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>97.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>97.1</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>96.9</td>
</tr>
</tbody>
</table>
Grid search parameter estimation

- We have optimized the hyper-parameters of the SVM classifier with the RBF Kernel using \textit{grid-search method}.
- We searched the hyper-parameter \(C \) and \textit{gamma} between the number of \(2^{-7} \) and \(2^7 \).

**TABLE IV. **The best hyper-parameter values for the SVM classifier with the RBF kernel

<table>
<thead>
<tr>
<th>Methods</th>
<th>(C)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG</td>
<td>(2^3)</td>
<td>(2^0)</td>
</tr>
<tr>
<td>SIFT</td>
<td>(2^3)</td>
<td>(2^{-5})</td>
</tr>
</tbody>
</table>
Gender recognition results

- From the face detection result, we divided \textbf{4,624 face images} into train and test sets with the ratio of \textbf{50:50 (2-cv) and 90:10 (10-cv)}.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy (%)</th>
<th>2-cv</th>
<th>10-cv</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG</td>
<td></td>
<td>96.50 ± 1.8</td>
<td>98.75 ± 2.5</td>
</tr>
<tr>
<td>SIFT</td>
<td></td>
<td>95.98 ± 0.4</td>
<td>99.20 ± 0.8</td>
</tr>
</tbody>
</table>
Conclusion

• The main objective of this paper is to recognize gender (male and female) from facial images.

• **First**, the Haar-cascade classifier was used to find the face from the whole image.

• **Second**, the face images were then assigned to the local gradient feature descriptors (HOG and SIFT) to compute the feature vector.
Conclusion

• **Finally**, for gender recognition, the invariant feature vector was classified using SVM with the RBF kernel.

• **The SIFT descriptor** outperformed the HOG descriptor when combined with *SVM with the RBF kernel*.

• This method obtained **very high recognition accuracy**.
Acknowledgement

• This research was supported by the Faculty of Informatics, Mahasarakham University, Thailand
THANK YOU FOR YOUR ATTENTION

Present at The 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing – iSAI-NLP2019
1 November 2019